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Abstract

The final bubble size distribution, resulting from the break-up of an air jet injected into the central axis of
a fully developed, high Reynolds number turbulent water jet has been measured using a Phase Doppler
Particle Analyzer (PDPA). The shape of the final size distribution is shown to depend not only on the
dissipation rate of turbulent kinetic energy, �, but also on the global void fraction, aH. It has been shown
that such a dependence can be expressed as a function of two dimensionless numbers, namely the jet Weber
number, Wen ¼ qU 2

JDJ=r, and the ratio between the initial bubble’s size and the critical diameter, D0=Dc.
The statistical properties of the time and distance separating two bubbles of the same diameter, after the
turbulent break process is complete, have also been measured. The probability density function of the inter-
arrival time between two consecutive bubbles was found to follow an exponential distribution with intensity
factor, k, depending on the number density of bubbles of a certain diameter and on the velocity of the
flow. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The statistical description of the cloud of particles resulting from the break-up of an immiscible
fluid immersed into a turbulent flow is of great relevance to many engineering and natural processes
such as two-phase flow chemical reactors, gas–liquid separators, liquid atomization and spray
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systems, aeration processes, etc. Of particular interest in all these cases is not only the description of
the probability density function (pdf) of the size of the resulting particle cloud, but also of the spatial
and temporal variations of the concentration of particles of a given size throughout the cloud.
When a particle is immersed into an immiscible turbulent flow, the turbulent stresses acting on

the surface of the particle may surpass the confinement due to the surface tension, causing the
particle to break into smaller ones (Kolmogorov, 1949; Baranaev et al., 1949). In an earlier study,
Mart�ıınez-Baz�aan et al. (1999a) showed that the characteristic time needed for this break-up
depends on the particle size and on the dissipation rate of turbulent kinetic energy of the un-
derlying turbulence, �. We found that for each value of the dissipation rate, there is a particle size,
namely Dgmax � 2:05ðr=qÞ3=5��2=5, for which the break-up time is a minimum. We also found that
this break-up time is not a monotonic function of the particle size. In the limit of very large
particles, the confinement of the surface tension becomes negligibly small and the break-up time is
given by tb / D2=3��1=3, while for particles smaller than Dgmax, the surface tension stresses domi-
nate, and the break-up time decreases with the size as tb / ðr=qÞ2=3��3=5ðD=Dc � 1Þ�1=2, where
Dc � 1:26ðr=qÞ3=5��2=5. In a subsequent study, Mart�ıınez-Baz�aan et al. (1999b) also showed that
upon break-up, the most probable size of the daughter particles depends on both the initial
particle size, D0, and the value of the dissipation rate of turbulent kinetic energy.
The existence of a cascade-type break-up process appears to indicate that when a particle of size

D0 is immersed into a turbulent flow of given characteristics, the final pdf of the resulting particle
size distribution should depend on the initial particle size, D0, the dissipation rate of turbulent
kinetic energy, �, and the residence time (or conversely the number of steps involved in the break-
up cascade). Clearly, this cascade-type of break-up implies that there should be two well-differ-
entiated asymptotic regimes. If the residence time, tr, is comparable to the particle break-up time,
tb, the particle will undergo a small number of divisions, and the final size pdf should retain a
memory of the initial size. However, if the particle break-up time is small compared to the resi-
dence time, the cascade will involve many break-up steps resulting in a final pdf whose shape
should be determined by the shape of the daughter pdf during the break-up process.
Many natural and engineering systems involve the break-up of a lump of fluid in a turbulent

flow with a time varying intensity. An example is the break-up of a lump of fluid immersed into a
turbulent jet in a spray atomizer. In this case, as the particles are convected by the mean flow into
regions of decaying turbulence, the cascade break-up takes place while they remain in regions of a
given � during a certain residence time. Mart�ıınez-Baz�aan et al. (2000) recently showed that under
conditions of decaying turbulence, if the number of break-up steps involved in the cascade is
sufficiently large, the final size pdf acquires a universal shape. The important questions of interest
which still remain unsolved are: (1) Under what set of conditions (i.e. turbulent intensity, void
fraction and residence time) will the final size pdf exhibit a universal shape? (2) what set of pa-
rameters determine this shape? and (3) how does the rate of decay of the turbulent kinetic energy
of the carrier flow affect the shape of the final pdf?
To answer these questions we have conducted a set of experiments where we have systemati-

cally varied the magnitude of the dissipation rate of turbulent kinetic energy at the injection point,
the rate of decay of �, and the initial size of the lump of air injected into the flow, D0. In addition
to measuring the shape of the final bubble size pdf and its dependence on � and D0, we have also
measured the statistical properties of the bubble cloud. In particular, we focused our study on the
temporal and spatial variations of the bubble concentration throughout the cloud.
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2. Experimental setup and measurement techniques

The experiments were performed by continuously injecting an air jet into the fully developed
region along the central axis of a high Reynolds number turbulent water jet. The experimental
facility is shown in Fig. 1. Since this facility is the same as that used in our previous studies
(Mart�ıınez-Baz�aan et al., 1999a,b, 2000), the reader is referred to Mart�ıınez-Baz�aan (1998) for a
complete description. We, therefore, will omit unnecessary details here.
Since the volume of water issued by the submerged water jet during the measuring time is very

small compared to the volume of the tank and since the dimension of the tank is very large
compared to the size of the water nozzle the turbulent water jet in which the break-up was studied
can be considered to be a free jet. The air jet was continuously injected into the central axis of the
water jet through a hypodermic needle of diameter Dn ¼ 0:394 mm (see Fig. 1). In order to insure
that the properties of the turbulence were fully characterized and nearly homogeneous and iso-
tropic, we limited our studies to cases where the bubbles break-up had been completed at a
specified downstream distance from the air injection point and where the bubbles remained in the
core of the jet (radial distances less than 1/3 LJ, where LJ is the value of the width of the jet at the

Fig. 1. Experimental facility.
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measuring point). The local values of � reported in this paper were estimated from hot film
measurements performed at the air injection point. An estimate of � at the central axis of the jet
can be given by

� ¼ 15m
Z 1

0

k21E11ðk1Þ dk1; ð1Þ

where E11ðk1Þ is the one-dimensional spectrum and k1 is the wave number in the direction of the
flow. The length of the film used in our experiments, Lf ¼ 1 mm, was larger than the Kolmogorov
scale, Lf > g. Thus, small eddies could not be resolved to perform the integral (1) and an alter-
native method was applied. The one-dimensional energy spectrum, shown in Fig. 2, was obtained
from the temporal series of the velocity measurements. The inertial subrange was identified in the
experimentally obtained spectra and, therefore, the value of � could be extracted through the
following power law (Hinze, 1975):

E11ðk1Þ ¼
18

55

8

9a

� �2=3

�2=3k�5=31 : ð2Þ

In Eq. (2) a ¼ 0:452 is an empirical constant provided by Gibson (1963) and obtained at the axis
of a turbulent round jet. Once the inertial range was identified, we fitted the energy spectra given
by (2) only to the )5/3 power law portion of our spectra. Notice that, in Eq. (2), � is the only
adjustable parameter to be determined. The value of � was, therefore, adjusted until the error
obtained during the fitting process was minimized. The solid line in Fig. 2 indicates the best fit of
Eq. (2) to the inertial subrange of our spectrum. Measurements of � along the axis of the jet are
depicted in Fig. 3 for two different exit velocities, namely U0 ¼ 12 m=s and U0 ¼ 17 m=s, which
correspond to Re ¼ 36,000 and Re ¼ 51,000, respectively. Two sets of experiments at Re ¼ 36,000
were performed to check the repetitiveness of the measurements.
The kinetic energy of a high Reynolds number turbulent flow cascades down from the largest,

integral scale to the smallest, viscous length, until it is eventually dissipated. Therefore, the rate of

Fig. 2. Experimentally measured energy spectrum. X=DJ ¼ 20, Re ¼ 36,000. DJ is the diameter of the water nozzle.
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dissipation of turbulent kinetic energy can be estimated through the energy flux across the large
scales as (Antonia et al., 1980)

� / u3c
‘
; ð3Þ

where uc and ‘ are the characteristic turbulent velocity and length scale, respectively. Let us define
the characteristic velocity as the centerline velocity, Uc, and the characteristic length, ‘ ¼ r1=2, as
the radial distance at which the velocity is Ur1=2 ¼ Uc=2. Since, in a turbulent round jet, Uc=U0 /
ðX=DJ � X0=DJÞ�1 and r1=2 / ðX � X0Þ, with X being the downstream distance from the nozzle and
X0 the virtual origin, Eq. (3) can be expressed as

�DJ

U 3
0

/ X
DJ

�
� X0
DJ

��4

: ð4Þ

This equation was derived by Friehe et al. (1972), and compared to experimental data. The
downstream evolution of the normalized rate of dissipation, �DJ=U 3

0 , obtained from our mea-
surements at two different Reynolds numbers, is exhibited in Fig. 3. The solid line represents a
correlation of the estimations of � based on the scaling argument given by Eq. (4). The results
presented in Fig. 3 were used in this paper to determine the local values of �.
To measure the bubble size and the axial and radial components of their velocity simulta-

neously, an Aerometrics Phase Doppler Particle Analyzer (PDPA) was used. The receiver col-
lecting angle was set at 60� (see Fig. 1) in the forward scatter direction. This gives a linear
relationship between the phase difference and the diameter of the scattering bubble, as calculated
from analytical modeling using the Lorenz–Mie theory (Bachalo and Houser, 1984; Bre~nna de la
Rosa et al., 1989, 1990; Sankar and Bachalo, 1991). In all the cases presented here the mea-
surements were taken at 20 nozzle diameters, 10 diameters downstream from the air injection
point. This location was determined to be downstream from the location where the break-up
process had already finished. The Reynolds number, Re ¼ UJDJ=m, where UJ is the water velocity
at the exit nozzle and DJ is the diameter of the nozzle, was varied from 27,000 to 94,000 giving,

Fig. 3. Normalized dissipation rate of turbulent kinetic energy, �DJ=U 3
0 . Here X0=DJ � 5:4.
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therefore, values of � at the air injection point which ranged from � � 1127 m2=s3 to � � 20,780
m2=s3. The global air void fraction, defined as aH ¼ Qa=ðQa þ QwÞ, where Qa and Qw are the flow
rates of air and water, respectively, was varied from 2:5	 10�4 to 1:6	 10�2.

3. Effect of the initial bubble size, D0, on the maximum bubble size of the final distribution, Dmax

In a previous paper, Mart�ıınez-Baz�aan et al. (2000) found that, in a turbulent water jet, when the
diameter of the bubbles was made dimensionless with the Sauter mean diameter, D32, of the final
bubble size distribution all the pdfðD=D32Þ collapsed onto a single, universal curve. We also
showed that the effect of aH on the shape of the final size pdf cannot be only attributed to an effect
of the attenuation of � due to the presence of the disperse phase. Rather, it must be an additional
effect of the size of the initial lump of air, D0, injected in the flow. This implies that the only
parameter needed to describe the shape of the final bubble pdf is D32.

1 Therefore, to completely
describe the shape of the final bubble size distribution in a decaying turbulent flow, one only needs
to know the dependence of D32 on � and aH or, equivalently, on D0.
The dependence of the maximum bubble size on the local value of the dissipation rate of TKE

of the underlying turbulence was found to be consistent with the results of classical models based
on the assumption of local isotropy and homogeneous turbulence (Kolmogorov, 1949; Hinze,
1955; Berkman and Calabrese, 1988; Baldyga and Bourne, 1993), which simply predict the ex-
istence of a critical maximum size, given by

Dmax /
r
q

� �3=5

��2=5; ð5Þ

where r is the interfacial surface tension, and q is the density of the continuous phase. In the case
of agitated tanks, where � remains constant during the break-up process, Hinze (1955) found
that 2

Dmax

r
q

� ��3=5

�2=5 ¼ 0:725; ð6Þ

although he reported an appreciable dispersion of the experimental data possibly due to inac-
curate drop size measurements.
In our previous work, we found that, in a turbulent jet, both the break-up frequency and the

size of the daughter bubbles depend on the size of the mother bubble (Mart�ıınez-Baz�aan et al.,
1999a,b). Extending Eq. (5) to the case of a decaying turbulent flow, Dmax can be expressed as a
function of D0 and the critical diameter, Dc / ðr=qÞ3=5��2=5 as

Dmax ¼ F ðD0;DcÞ; ð7Þ

1 Or any high moment of the distribution such D90%.
2 In his experiments Hinze defined Dmax as the value for which 95% total volume is contained in drops with D6Dmax.
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and, in dimensionless form,

Dmax

Dc

¼ F1
D0

Dc

� �
: ð8Þ

In a turbulent jet, the value of � on the central axis decreases with the distance from the nozzle
exit. Thus, during the time needed for a bubble of initial size D0 to finish its break-up cascade
process (which involves several break-up events), it will be transported to regions of decreasing
values of �. The rate of decay of � can be estimated as � / U 3

J =DJðX=DJ � X0=DJÞ�4 (Friehe et al.,
1972). Eqs. (7) and (8) can, therefore, be expressed as

Dmax

DJ

¼ F2ðD0=DcÞW �3=5
en ; ð9Þ

where Wen ¼ qU 2
JDJ=r is a Weber number based on DJ and UJ, and F2 is a function which only

depends on D0=Dc.
To determine the function F2 we measured the maximum bubble size, Dmax, for different cases

where the flow rate of air, Qa, and � at the air injection point were varied to change the initial value
of D0. The experiments consisted of measurements of the final bubble size distribution, achieved
once the break-up process had concluded. In these experiments the needle diameter was kept fixed
and equal to 0.394 mm. Three sets of experiments were performed, increasing the root-mean-
squared velocity of the water jet, u0, at the air injection point from 1.46 to 5.12 m/s for three
different values of Qa, namely Qa ¼ 3:5, Qa ¼ 7:25, and Qa ¼ 34:35 ml/min. A final set of exper-
iments was performed by keeping the water velocity constant at UJ ¼ 17:85 m=s ðu0 ¼ 2:93 m=s at
the air injection point) while varying the air velocity from 0.35 to 7.73 m/s. The experimental
results obtained in the first three sets of experiments are shown in Fig. 4. Observe that, for very
small air injection flow rates (Qa ¼ 3:5 ml=min and Qa ¼ 7:25 ml=min), the maximum bubble
size decays with a Weber number power law almost equal to the one predicted by the simple
theory given in Eq. (9). Fig. 4 also shows that the function F2 depends on the initial bubble size,

Fig. 4. Variation of the maximum bubble size with the nozzle Weber number. Qa is the flow rate of air injected. Straight

lines indicate a )3/5 decaying power law given in Eq. (9).
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D0. Notice that the value of Dmax increases with the flow rate of air, Qa. Since, as it will be
described in Section 3.1, Qa determines the size of the initial bubble released from the air injection
needle, D0, it is clear that increasing values of D0 result in increasing values of F2 and, conse-
quently, larger values of Dmax. From the measurements of Dmax=DJ and Wen obtained for a large
range of values of � and D0 one could extract the function F2ðD0=DcÞ, through the use of Eq. (9),
if the size of the initial lump injected into the flow, D0, were known.
The value of D0 corresponding to the above experimental conditions could not be measured,

and had to be extrapolated from the injection conditions. The procedure followed to estimate D0

is described below.

3.1. Dependence of D0 on the injection conditions

In order to determine D0 we conducted a series of additional experiments. In these experiments,
the turbulent properties of the water jet at the air injection point, u0, the air flow rate, Qa, and the
needle diameter, Dn, were systematically varied to cover a wide range of flow conditions. To vary
the turbulent properties of the water at the air injection point, the Reynolds number of the water
jet was fixed at Re ¼ 53,552 and the air was injected at two different positions, namely 20 DJ (Set 1
in Table 1) and 29 DJ (Set 2) downstream from the water nozzle. In these two sets of experiments
the air injection velocity was equal to the local mean velocity of the water jet at each position. In
addition, we conducted a third set of experiments with the air injection point fixed at 29 jet di-
ameters (Set 3), but with air injection velocities greater than the local mean velocity of the water
jet. See Table 1 for a description of the experimental conditions.
The size of the bubbles releasing from the injection needle was measured by analyzing over 3000

digital images taken with a CCD camera at a very short exposure time of 1/80,000 s. A typical
image of bubbles detaching from the air injection needle is shown in Fig. 5. The mean bubble
diameter was found to increase with both the needle diameter, Dn, and the air flow rate. Fur-
thermore, the bubble mean diameter was found to decrease with increasing values of the root-
mean-square of the water velocity at the air injection point, u0. The dependence of the Sauter mean
diameter, D32, of the measured initial bubble size distributions on the needle diameter, Dn, is
shown in Fig. 6 for different values of u0 and Qa.

3

When considering the turbulent break-up of a bubble that can translate freely, it is known that
turbulent scales larger than the bubble’s diameter simply transport the bubble from one location
to another. Scales of the order of the bubble diameter, or smaller, are responsible for the break-

Table 1

Experimental conditions

Uw (m/s) u0 (m/s) Ua (m/s) X=DJ

Set 1 4.28 1.07 4.28 20

Set 2 2.75 0.69 2.75 29

Set 3 2.75 0.69 > Uw 29

X=DJ indicates the air injection point.

3 Since in our turbulent water jet u0=Uw � 25%, the water velocity at the air injection point, Uw, was chosen to

describe the experimental conditions.
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up. For bubbles in the inertial subrange, this means that their characteristic break-up time is given
by tb / ðD2=�Þ1=3. In the present scenario, the initial lump of air injected into the turbulent water
flow cannot freely translate. Indeed, it is attached to the injection needle. In this case, large scales
can sweep the initial lump of air off of the injection needle. Additionally, smaller scales may also
break the initial lump, as in the case of a free bubble. Therefore, in the initial break-up problem,
all turbulent scales must be considered. This implies that the characteristic turbulent break-up
time should be given by tb / Dn=u0 rather than tb / ðD2

n=�Þ
1=3
. The diameter of the bubbles re-

sulting from the initial break-up can, consequently, be estimated as D0 / ðQatbÞ1=3 giving

D0 /
6

p
QaDn

u0

� �1=3

¼ 3

2

Ua

u0

� �1=3

Dn: ð10Þ

Fig. 6. Measured Sauter mean diameter versus needle diameter. Re ¼ 53,552.

Fig. 5. Characteristic initial bubble size, D0. Injection point X=DJ ¼ 29; Ua ¼ Uw ¼ 2:75 m=s; Dn ¼ 0:838 mm. Flow
goes from right to left. The air injection needle exit is shown in white.

C. Mart�ıınez-Baz�aan et al. / International Journal of Multiphase Flow 28 (2002) 597–615 605



In our experiments, when the air velocity was equal to the local value of the water jet mean ve-
locity, Uw, the above equation simplified to,

4 D0 / Dn, a linear dependence shown in Fig. 6.
Notice that for the cases where Ua ¼ Uw, the Sauter mean diameter depends only on Dn, even
though we varied the value of the dissipation rate of TKE from � ¼ 208 m2 s�3 to � ¼
1205 m2 s�3. Also note that the values of D32 measured for the two cases where Ua > Uw (filled
circles, �, in Fig. 6) are larger than those obtained with Ua ¼ Uw for the same needle diameter.
This behavior confirms the estimated diameter given by Eq. (10). Eq. (10) can also be expressed as

D0

Ua=u0ð Þ1=3
¼ bDn; ð11Þ

where b is a constant or order one to be determined experimentally. This simple model is verified
in Fig. 7, where we have plotted D32=ðUa=u0Þ1=3 versus Dn. From this figure a value of the constant
b � 1:4 can be inferred.
We now have a simple model to determine D0 as a function of the injection conditions, u0, Ua

and Dn. Using Eq. (11) to estimate the value of D0 for the experimental conditions at which the
final bubble pdfs were measured, and combining with Eq. (9) to calculate F2, we have been able to
obtain the dependence of F2 on D0=Dc, and consequently, the dependence of Dmax=DJ on D0=Dc.
Fig. 8 portrays the evolution of F2 with D0=Dc. In this figure Eq. (11) was used to estimate the
values of D0 for each experimental case, and Dc was calculated using the experimentally measured,
local values of � at the air injection point. Fig. 8 also shows that the dependence of F2 on D0=Dc is
almost linear, giving an almost perfect collapse of all the experimental data onto the same line.
Summarizing the above results, we have shown that the final bubble size pdf depends on the

value of � at the air injection point, the size of the initial bubble, D0, and the residence time of the

Fig. 7. Dependence of D32=ðUa=UwÞ1=3 with the needle diameter. Re ¼ 53,552.

4 In Figs. 6 and 7, the Sauter mean diameter, D32, of the initial distribution of bubbles was selected as a measure of D0.
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bubble in regions of active �. Mart�ıınez-Baz�aan et al. showed that, for sufficiently large values of �,
when the diameter is made dimensionless with D32, all the final pdfs collapsed onto the same
curve. Therefore, the final value of D32 is the only parameter needed to characterize the shape of
the final bubble pdf. Finally D32 is given by Eq. (9) where F2 is linearly dependent on D0=Dc.
Up to this point we have focused our analysis to study the shape of the final bubble size dis-

tribution. In the following section we will describe the concentration of bubbles throughout the
spray and its dependence on � and the bubble size.

4. Inter-arrival time between bubbles

Since we are able to measure not only the size of the bubbles crossing the probe volume but also
their velocity and their arrival time, we can compute the time and, consequently, the distance
separating two consecutive bubbles of the same size. This enables us to analyze the statistics of the
fluctuations of the concentration of bubbles and their dependence on the bubble size, D, � and aH.
Fig. 9 shows a typical time series of the bubble size diameter measurements of our experiments.
Simple inspection of this data indicates that there could be some clustering of the occurrence times
of the bubbles. This type of information can be very useful in order to study clustering events of
bubbles of different sizes or to infer if the formation frequencies of bubbles respond to certain
frequencies of the flow. One would expect that bubbles of similar diameter behave similarly in
terms of formation and dispersion throughout the cloud. In the range of bubble sizes of interest
here, the bubble Stokes number, defined as

St ¼ D2u0

36m‘
; ð12Þ

where D is the diameter of the bubble, u0 and ‘ are the characteristic velocity and length scales,
and m is the kinematic viscosity, is very small ðSt � 1Þ. All bubbles will disperse in a similar manner
and the effect of any clustering in the time series will only be the consequence of the break-up

Fig. 8. Evolution of F2 with D0=Dc.
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process. In general, the integral length scale of the considered turbulent flow, defined as (Hinze,
1975),

‘ ¼ pE11ðk1 ¼ 0Þ
2u02

ð13Þ

is taken as the characteristic length scale in Eq. (12). E11ðk1 ¼ 0Þ is the one-dimensional energy
spectrum evaluated at the wave number k1 ¼ 0 and u0 is the fluctuating axial velocity.
The group of clusters, shown in Fig. 9 by the concentration of a larger number of bubbles

within some intervals of time, may indicate the presence of a bubble concentration-time corre-
lation or it may simply be the consequence of a random occurrence. In the analysis of the bubble
size pdf (described in the previous sections), the time dependence of the process was not ad-
dressed. In the following we will present some experimental measurements of the time series and
we will attempt to establish if the break-up of bubbles by a turbulent flow contains some sort of
time correlated behavior.
In order to investigate the existence of a time correlation in the bubble break-up process,

we subdivided the bubble sizes into classes. For this purpose, the size distribution was discretized
into five size-bins, namely 3 lm < D < 20 lm, 40 lm < D < 60 lm, 80 lm < D < 100 lm,
120 lm < D < 200 lm, and D > 200 lm. The time separating the arrival of two consecutive
bubbles which belong to the same class was recorded. This analysis provided us with information
on the temporal variation of concentration of bubbles of different sizes. The probability density
functions of the inter-arrival time corresponding to the four size bins are given in Fig. 10 for the
case of Re ¼ 53,552. The distribution corresponding to the fifth size-bin, D > 200 lm, is not
represented due to the very small number of bubbles contained in this size-bin. Notice that for the
four size-bins presented, the probability of the inter-arrival time between two consecutive bubbles
increases as the inter-arrival time decreases. Fig. 10 shows that there is not a predominant time
separating two consecutive bubbles of the same size. Therefore the inter-arrival time pdf does not
show a high concentration of bubbles at a characteristic frequency. Imagine, for example, a flow
in which bubbles of size D1 are formed at a fixed frequency of 100 Hz. If we calculated the pdf of

Fig. 9. Time record of bubbles generated by a water jet. Re ¼ 53,552.
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the time between two consecutive bubbles of size D1 we would find a strong peak in the distri-
bution for a value of t equal to 10 ms. Although the data presented in Fig. 10 correspond to an
intermediate Re ¼ 53,552, it can be clearly seen that the pdf follows exponential distributions of
different mean value, tm ¼ 1=k,

pdfðtÞ ¼ ke�kt; ð14Þ
where k is the intensity factor and tm ¼ 1=k is the mean as well as the root-mean-square value of
the distribution. The slopes of the tails represent the mean rate of the arrival of bubbles of each
size class. Note that if the inter-arrival time is scaled with the mean arrival time t ¼ t=tm ¼ kt,

pdfðtÞ ¼ e�t ; ð15Þ
all the pdfs should collapse onto a single one.
The probability density functions shown in Fig. 10, normalized by the mean value, t ¼

t=tm ¼ kt, are shown in Fig. 11. As indicated by Eq. (15), when using the dimensionless time, t,
the pdfðtÞ follows the same exponential distribution with slope )1. As one would expect, since
the exponential distribution provides the probability for the time between successive events oc-
curring in a Poisson process, it can be concluded that the process of formation of bubbles by a
high intensity homogeneous turbulence is a random process which can be well represented by a
Poisson distribution. This indicates that individual bubbles within the turbulent jet act indepen-
dently of each other and, therefore, the movement of one of them is not conditioned by the
neighboring ones. In a denser case, where the motion of a bubble may influence the others, this
general conclusion is not expected to be valid and the exponential approximation may not apply.

4.1. Effect of the turbulent kinetic energy on the inter-arrival time

The time between two consecutive particles which belong to the same size-bin can be defined as

Dti ¼
1

CiUiA
; ð16Þ

Fig. 10. Inter-arrival time pdf of different classes of bubbles. Re ¼ 53,552. Symbols are: ð�Þ 3 lm < D < 20 lm,
ð�Þ 40 lm < D < 60 lm, ð}Þ 80 lm < D < 100 lm, ðMÞ 120 lm < D < 200 lm.
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where Ci and Ui are the number of bubbles of size-class i per unit volume and the velocity of a
bubble sized in class i, respectively, and A is the jet cross-section. Therefore, one would expect that
the inter-arrival time, Dti, should increase with decreasing values of the concentration, Ci, and of
the velocity, Ui.
To study the dependence of the inter-arrival time on the Reynolds number of the water jet, or in

our case on �, we varied Re by changing the velocity at the exit of the nozzle. The evolution of the
mean inter-arrival time of the five bubble size-bins defined above is shown in Fig. 12. As the mean
water jet velocity, U, increases, the Reynolds number of the jet increases and so does �. Therefore,
in addition to increasing the velocity of the bubbles, Ui, the simultaneous increase in the turbulent
kinetic energy of the water flow may also increase the total number of bubbles formed due to
increased break-up. This holds true for small sized bubbles which belong to class 1 (�), class 2 (�),
and class 3 (}). Large bubbles within class 5 (.), increase their inter-arrival time since, although
their velocity increases, this type of bubbles are more likely to break for larger values of �. Bubbles
of size class 4 (M), lessen their inter-arrival time when the water jet Reynolds number is increased
up to a certain value. When this value is reached, the concentration of this bubble class, C4,
decreases due to increased break-up and the time between two consecutive bubbles begins to
increase. The behavior of the standard deviation of the inter-arrival time, although not shown
here, is identical to that of the mean value. In fact, it has been found that the ratio of the rms to
the mean value, t0=tm, is one in all cases, as expected from exponential distributions.
To study the effect of the water jet Reynolds number (or �) on the shape of the inter-arrival time

pdf, we have selected the bubble size class 2, 40 lm < D < 60 lm. Their inter-arrival time pdf
is plotted in Fig. 13 for three different values of the water jet Reynolds number. The results are
consistent with those shown in Fig. 12. As Re is increased, the inter-arrival time of the class 2
bubbles decreases since their convective velocity is faster and more bubbles are produced due to
the break-up of larger ones. Selecting a non-dimensional variable of time, t=tm (tm is the inter-
arrival mean value), the probability density function, pdfðt=tmÞ, has a self-similar behavior that
can be perfectly represented by an exponential distribution, pdfðt=tmÞ ¼ exp½�t=tm�, as shown in

Fig. 11. Pdf of the normalized inter-arrival time, t=tm (tm ¼ mean inter-arrival time) of different classes of bubbles.

Re ¼ 53,552. Symbols are: ð�Þ 3 lm < D < 20 lm, ð�Þ 40 lm < D < 60 lm, ð}Þ 80 lm < D < 100 lm, ðMÞ 120 lm
< D < 200 lm.
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Fig. 14. The self-similar behavior is independent of the Reynolds number and of the diameter of
the bubble, and the possible clustering mentioned in the beginning of this section is, therefore, the
product of a random process.

5. Inter-arrival distance between bubbles

The distance between two consecutive bubbles of the same class is calculated from their cor-
responding inter-arrival time, Dti, and their convective velocity, Ui, as

Fig. 12. Evolution of mean inter-arrival time, tm, with the local convective velocity, U. The Reynolds number of the jet
has been varied from Re � 32,000 to Re � 60,000. Symbols are: ð�Þ 3 lm < D < 20 lm, ð�Þ 40 lm < D < 60 lm,
ð}Þ 80 lm < D < 100 lm, ðMÞ 120 lm < D < 200 lm, ð.Þ D > 200 lm.

Fig. 13. Evolution of the inter-arrival time probability density function of bubbles of size 40 lm < D < 60 lm with the

Reynolds Number.
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Dli ¼ DðtiUiÞ ¼
1

CiA
: ð17Þ

The probability density function of the distance separating two consecutive bubbles of the same
size follows the same characteristics as those mentioned for the inter-arrival time. Since bubbles of
the same class move at the same velocity, the pdf of the inter-arrival distance of bubbles within the
same class follows an exponential distribution with an intensity parameter, kl, which only depends
on the number (concentration) of particles of a certain class i; Ci. Fig. 10, in the previous section,
shows that the steepest slope of the inter-arrival time pdf corresponds to the bubble-size class 2
(40 lm < D < 60 lm), followed by bubble-size class 3 ð80 lm < D < 100 lmÞ, and bubble size-
class 4 ð120 lm < D < 200 lmÞ. Finally, the least steep slope corresponds to bubble-size class 1
ð3 lm < D < 20 lm). The same trend is applicable to the pdf of the inter-arrival distance (not
shown here), Dli ¼ DðtiUiÞ, indicating that the convective velocities of all bubble-size classes, Ui,
are the same and equal to those of the mean flow.
From the above results on the inter-arrival time and inter-arrival distance, we observe that the

bubbles are not formed in a predictable manner. A bubble of initial size D0 undergoes many
break-up events, leading to a wide range of bubble sizes in their final size distribution. It is evident
from our measurements that these bubbles are both created and dispersed randomly. Edwards
and Marx (1995) developed a theoretical framework for the analysis of the time-based statistics of
sprays. Based on their approach, the measured bubbly jet behaves as an ideal spray driven by
many superposed Poisson processes (of bubble sizes), each one characterized by a continuous
intensity function. All bubbles produced by the break-up of an air mass injected into a turbulent
water jet are created and transported downstream in the same way. The pdf of the inter-arrival
time or distance between two consecutive bubbles of the same class follows the exponential dis-
tribution, characteristic of steady-state case developed by Edwards and Marx (1995). Therefore,
all bubbles, in the range of bubble sizes and jet Reynolds numbers presented here, feel the in-
fluence of the water jet, which, at its axis, can be characterized as isotropic and homogeneous
turbulent flow. Measurements at the edge of the water jet would indicate a preferential concen-

Fig. 14. Evolution of the normalized inter-arrival time pdf for bubbles of size 40 lm < D < 60 lm with the Reynolds

number.
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tration of those bubbles transported by large scales. These results would be shown in the above
pdf as a strong deviation from their exponential distribution. Similar types of measurements have
been presented by Edwards and Marx (1995), for very small particles, which follow the flow,
measured in the internal shear layer of a kerosene spray flame.
To compare our experimental data with a random process we have generated two different

sequences of numbers using a random generator. The first sequence was generated by producing
a set of equally distributed numbers. The second set was produced using a set of normally dis-
tributed numbers. After sorting the sequences in ascending order we calculated the difference
between two consecutive numbers and the probability density function of the computed differ-
ences. The pdfs obtained with both series, shown in Fig. 15, are identical to those obtained when

Fig. 15. Pdf of two random signals. Symbols are: (�) uniformly distributed random function, and (N) normally dis-

tributed random function.

Fig. 16. Power spectrum of a random signal.
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we calculated the inter-arrival time and inter-arrival distance between two bubbles of the same size
family. Similarly, we created a random sequence of numbers between 3 and 400 (which corre-
sponds to the size of the measured bubbles) and calculated the power spectrum. The spectrum
obtained is presented in Fig. 16 together with the spectrum measured experimentally. Notice that
both spectra are uniform with no peaks. Thus, there is no periodic interaction between turbulence
and bubble production.

6. Conclusion

The shape of the final bubble size pdf, achieved once the break-up process taking place along
the central axis of a turbulent water jet is complete, has been studied experimentally. It has been
shown that in a turbulent decaying flow, the shape of the bubble pdf depends on the global air
void fraction, aH, on the local value of �, and on the ratio between the residence time and the
break-up time. The maximum bubble size, Dmax, has also been measured. The measurements have
been found to be consistent with previous models based on ideas of local homogeneous and
isotropic turbulent flow. In addition, in a turbulent water jet Dmax has been found to have a linear
dependence on the initial bubble size, D0.
To study the fluctuations of the concentration of bubbles and its dependence on the bubble size

and �, the probability density function of the distance between two consecutive bubbles of the
same size has also been measured. The inter-arrival time and inter-arrival distance pdf have been
shown to follow exponential distributions. This indicates that the process of the break-up and
dispersion of bubbles by a high Reynolds number turbulent water jet is a random process given by
a Poisson distribution.
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